RUBRIC 1: Biography of a scientist from an under-represented segment of society

	4	3	2	1
Understanding	Provides accurate and specific scientific facts and information that fully explain the biography of the scientist.	Provides scientific facts and information that usually are accurate and explain the biography of the scientist.	Provides scientific facts and information that are unrelated to the biography of the scientist or are off	Provides vague or incomplete information that does not explain the biography of the scientist.
Thinking/Inquiry	Demonstrates a thorough understanding of obstacles the scientist overcame in the pursuit of their career.	Demonstrates some understanding of the obstacles overcome by the scientist.	topic. Demonstrates an understanding of the obstacles that must be overcome, but does not relate them to a specific scientist.	Demonstrates a vague acknowledgement of the obstacles overcome.
Communication	Always uses appropriate scientific terminology to enhance the text.	Frequently uses appropriate scientific terminology to enhance the text.	Sometimes uses scientific terminology to enhance the text.	Rarely uses proper scientific terminology to enhance the text.
Application	Fully describes the experimental protocols followed by the scientist.	Describes the experimental protocols followed by the scientist.	Lists experimental protocols followed by the scientist.	Mentions that experimental protocols were followed by the scientist.

BLM 1: Quotations to initiate thinking

"Women are more likely to have their research published if the referees who review their work are unaware of their gender."

• New Scientist, January 2008

"Troubling performance gaps exist between Hispanic and African American students and their white peers, and also across socioeconomic divisions. These achievement gaps continue to show up in grades, dropout rates, advanced science course selection, and standardized test scores. African American and Hispanic science students continue to underperform compared to white students, and poor school districts underperform compared to affluent ones."

• Science Teacher, March 2007

"A number of factors contribute to the high attrition for women (and underrepresented minority men) in science."

• Office of the Dean of the College at Brown University, 2005

"If academia is to offer varied role models and perspectives for a diverse population of students, it must become more welcome to women and ethnic minorities."

• Nature, March 2007

BLM 2: Prompts for responses to quotes

i. Why may gender bias exist in peer reviewed journals?

ii. Why do you think gaps in achievement exist?

iii. What could be done to improve or change the achievement of minority groups?

iv. What may be some of the causes of a high drop out or switch out rate among women and men from underrepresented minority groups?

v. How could academia become more welcoming to women and ethnic minorities?

BLM 3: Interactive notes on readings

Interactive note taking helps to guide you through a reading and to focus your attention on the important points.

BEFORE	DURING	AFTER
(prepare to read)	(question and comment)	(summarize and synthesize)

Questions based on the readings:

i. Why might science be viewed as a "male career"?

ii. Is gender and visible minority bias in the sciences a societal issue or something that should be handled by academic institutions?

iii. What types of accommodations might encourage more women and visible minorities to enter scientific fields?

iv. Is there blatant discrimination against women and visible minorities entering the sciences or is there more subtle discouragement?

v. What might subtle discouragement look like?

vi. Create two test questions related to the articles.

vii. Place a comment related to the articles, on the blackboard.

BLM 4: Biography outline

Ask yourself what the focus of your paper, presentation, or poster is. Identify four different aspects of the scientist's life, including:

r		r	
i.	the focus of their research	ii.	their greatest accomplishments
iii.	how their accomplishments contributed to scientific knowledge and/or improvement to the quality of life	iv.	what extensions to the subjects research have been or may be performed

Additional details:

BLM 5: Problem-Solution Sheet

Problems Encountered	Ideas for Solutions
1.	
2.	
3.	
5.	
4.	
5.	

Rubric 2: Research paper on obstacles that must be overcome by an individual with a genetic anomaly

	4	3	2	1
Communication	The writer clearly persuades, convinces or informs the reader about obstacles to be overcome. The writer follows up on these details throughout the document.	The writer attempts to persuade, convince or inform the reader about obstacles to be overcome.	Little attempt is made to persuade, convince or inform the reader about obstacles to be overcome.	Obstacles to be overcome are mentioned.
Knowledge	Information is always accurate and supports the writer's argument.	Information supports the writer's argument.	Information is supported with little fact.	Information is not supported. For example, blanket statements "research shows"
Thinking	Complete solutions to overcoming obstacles are included with explanations of their plausibility.	Solutions to overcoming obstacles are included, but they may not always be plausible.	Solutions to overcoming obstacles are included, with no support for their plausibility.	Solutions are mentioned.

BLM 6: Genetic anomalies KWHL chart

Topic:			
What do I KNOW ?	What do I WANT to know?	HOW will I learn?	What did I LEARN ?

Other areas of concern

BLM 7: Karyotype mapping

Karyotype analysis involves organizing chromosomes based on their size and the location and sizes of stained segments of DNA. Our genetic information is stored in 23 pairs of chromosomes that vary in size and shape. Chromosome 1 is the largest, and chromosome 22 is the smallest. The 23rd pair of chromosomes are the sex chromosomes, X and Y. Females have two X chromosomes but males have one X and one Y chromosome. Each chromosome has a centromere that divides the chromosome into a long arm and a short arm and giving chromosomes their usual X shape. Each chromosome has a banding pattern of DNA segments that can be stained to make it visible.

XX	XX						
1	2	3	4	5	6	7	8
XX	XX						
9	10	11	12	13	14	15	16
XX	XX	XX	XX	XX	XX	ХУ	XX
17	18	19	20	21	22	Male	Female
						_	ex osomes

Modified from:

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd.chapter.272

http://www.biology.arizona.edu/human bio/activities/karyotyping/karyotyping.html

BLM 8: Research into a genetic anomaly				
Name of student:				
Name of genetic anomaly:				
Causes:				
Symptoms:				
Treatments and prevention:				
Societal challenges and triumphs:				

BLM 9: Comparison organizer for personal response

Subject:		
Use the following terms in the	Subject:	
development of your response		
CONTRAST COMPARE		
 although again 	Main Idea (What do yo	bu have to say about the subject):
• but • also		
• however • similarly		
• in contrast • likewise		
• yet		
• nonetheless Examples	Paragraph:	
• still • indeed		
• while • such as		
• despite • after all		
• regardless • even		
 though in fact 		
insteadfor instance		
for example		
• for example		

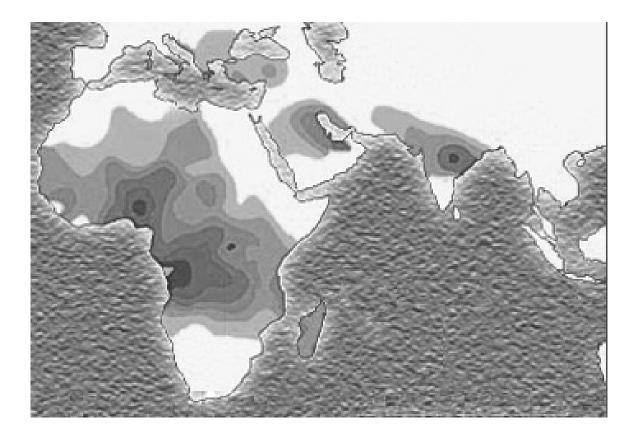
Rubric 3: Development of a model of the *Plasmodium vivax* **lifecycle**

	4	3	2	1
Knowledge	Content of the	Content of the	The model begins	Content of the
	model is always	model is mostly	to explain the	model does not
	accurate and	accurate, somewhat	Plasmodium vivax	demonstrate an
	complete and	complete, and	lifecycle.	understanding of
	contributes to the	contributes to the		the Plasmodium
	understanding of	understanding of		vivax lifecycle.
	the Plasmodium	the Plasmodium		
	vivax lifecycle.	vivax lifecycle.		
Application	A detailed	An explanation of	An explanation of	An incomplete
	explanation of all	some steps of the	the Plasmodium	explanation of
	steps of the	Plasmodium vivax	vivax lifecycle	Plasmodium vivax
	Plasmodium vivax	lifecycle enhances	accompanies the	lifecycle
	lifecycle enhances	the model.	model.	accompanies the
	the model.			model.
Communication	The model of the	The model of the	The model of the	The model of the
	Plasmodium vivax	Plasmodium vivax	Plasmodium vivax	Plasmodium vivax
	lifecycle is	lifecycle is	lifecycle is mostly	lifecycle is limited
	completely,	completely labeled.	labeled	in its labeling.
	accurately and			
	neatly labeled.			

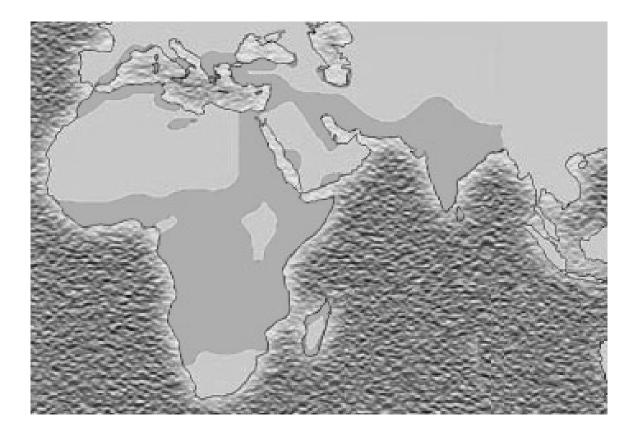
BLM 10: Percentage of Persons w	with Hb ^S b	y Country
---------------------------------	------------------------	-----------

Country	Percentage	Country	Percentage
Tanganyika	5-40	Trinidad	10
Uganda	2 - 40	Mauritania	5 - 10
Mozambique	1-40	Mexico	0-10
Democratic Republic of Congo	4-36	USA	0-10
Angola	4-35	Upper Volta	3.5 - 9.3
Nigeria	18-32	Jamaica	6-9
Greece	0-32	Martinique	6 – 9
Cameroon	6-28	Curacao	5-9
Liberia	0.7 - 28	Colombia	0-9
Burundi	1-27	Panama	8
Sierra Leone	27	Guadalupe	0-8
Congo (Brazzaville)	26	Cuba	5 – 7
Gabon	13 - 25	Puerto Rico	5 – 7
Kenya	0-25	Rwanda	1-5
Togo	23	Tunisia	2
Ghana	8.3 - 23	Algeria	1.5
Gambia	4-23	Morocco	1.5
Madagascar	3-22	Ethiopia	1
Surinam	0-22	French Somaliland	1
Niger	20.6	South Africa	1
Chad	20	South West Africa	1
Mali	10-20	United Arab Republic	1
Zambia	10 - 20	Chile	1
Guinea	8.5 - 20	El Salvador	1
Ivory Coast	4-20	Ceylon	1
British Honduras	0-20	Cyprus	1
Portuguese Guinea	0.3 - 19.5	India	1
Sudan	2-18	Indonesia	1
Dahomey	17	Iran	1
Turkey	0-17	Iraq	1
French Guiana	4 - 15	Israel	1
Guyana	0-15	Jordan	1
Venezuela	1 – 13	Lebanon	1
Brazil	0 - 13	Macao	1
Senegal	5 - 12	Muscat and Oman	1
Saudi Arabia	0 - 11	Pakistan	1
Dominican Republic	10	Syria	1
Southern Rhodesia	10	Portugal	1
Modified from: Abramson	II 11 (1 10)	73 Siekle Cell Disease: di	· · · · ·

Modified from: Abramson, Harold et. al, 1973. Sickle Cell Disease: diagnosis, management, education and research. The C.V. Mosby Company, Saint Louis

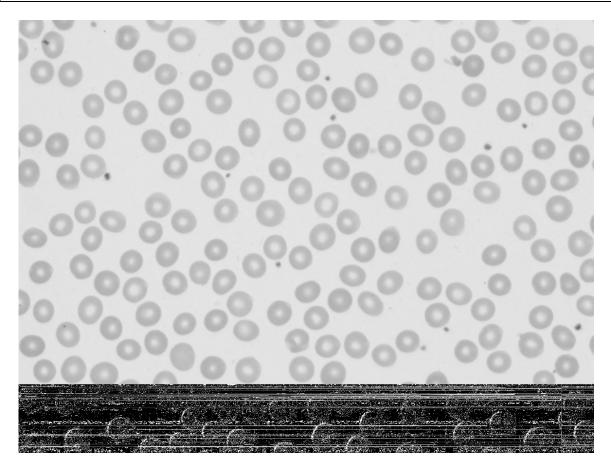

BLM 11: Rate of malarial infection per 100 000 individuals in the population.

Country	Rate per 100 000 individuals in the population	Country	Rate per 100 000 individuals in the population		
Uganda	477.93	Kenya	3.94		
Sao Tome and Principe	393.53	Colombia	3.72		
Liberia	301.51	Belize	3.70		
Tanzania (United Rep. of)	289.71	Lao People's Democratic Rep.	3.34		
Burundi	273.96	Peru	2.93		
Mozambique	269.72	Panama	2.88		
Malawi	240.36	Guatemala	2.52		
Namibia	223.44	Somalia	2.36		
Zambia	190.18	Bolivia	2.31		
Solomon Islands	189.94	Brazil	2.13		
Ghana	169.81	Bhutan	1.69		
Guinea-Bissau	134.57	India	1.67		
Benin	121.98	Honduras	1.46		
Madagascar	121.49	Nicaragua	1.25		
Senegal	119.25	Venezuela	1.23		
Burkina Faso	114.95	Haiti	1.18		
Guinea	109.53	Indonesia	1.01		
Angola	106.90	Tajikistan	0.87		
Rwanda	102.09	Pakistan	0.80		
Gambia	100.47	Korea (Dem. Peo. Rep. of)	0.73		
Zimbabwe	97.60	Thailand	0.56		
Sierra Leone	95.41	Philippines	0.55		
Тодо	92.15	Sri Lanka	0.55		
Sudan	91.77	Viet Nam	0.46		
Congo (Dem. Republic of)	83.13	Bangladesh	0.39		
Vanuatu	71.90	Nepal	0.37		
Gabon	66.78	Cape Verde	0.33		
Mali	62.23	South Africa	0.30		
Mauritania	59.64	Iran (Islamic Republic of)	0.25		
Niger	59.05	Paraguay	0.24		
Chad	47.66	Malaysia	0.22		
Cameroon	45.96	Costa Rica	0.17		
Timor Leste	40.89	Dominican Republic	0.15		
Guyana	36.09	Turkey	0.13		
Swaziland	34.03	Kyrgyzstan	0.09		
Suriname	33.65	Azerbaijan	0.06		

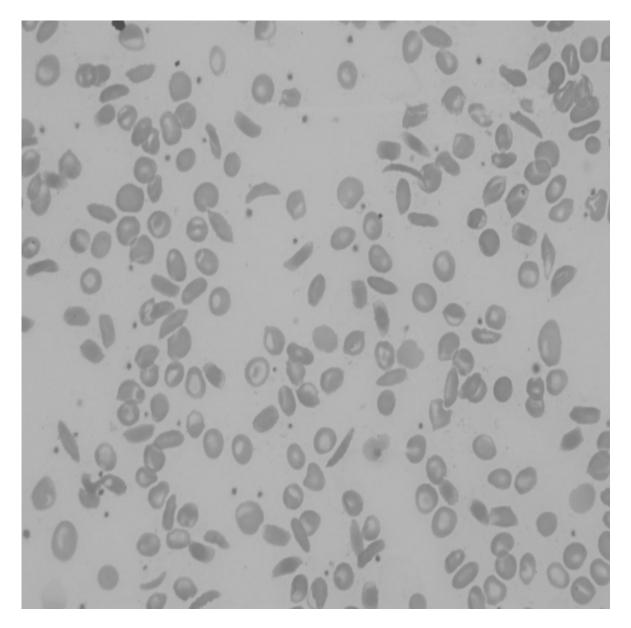

Reducing Societal Bias through the Study of Genetics

Equatorial Guinea	31.25	Georgia	0.06
Cote d'Ivoire	24.87	Mexico	0.04
Afghanistan	24.75	China	0.02
Central African Republic	24.75	Korea (Republic of)	0.02
French Guiana	21.49	Mauritius	0.02
Nigeria	21.03	Saudi Arabia	0.02
Eritrea	17.39	El Salvador	0.01
Myanmar	14.47	Iraq	0.01
Yemen	13.24	Argentina	0.00
Botswana	12.56	Algeria	<0.01
Papua New Guinea	12.30	Armenia	<0.01
Ethiopia	8.00	Egypt	< 0.01
Djibouti	7.17	Morocco	<0.01
Congo	5.28	Oman	<0.01
Comoros	5.12	Syrian Arab Republic	<0.01
Cambodia	5.04	Turkmenistan	< 0.01
Ecuador	4.00	Uzbekistan	< 0.01

From: <u>http://www.globalhealthfacts.org/topic.jsp?i=24#table</u> WHO, Roll Back Malaria, & UNICEF, World Malaria Report 2005, Table A.21 **BLM 12: Sickle cell trait distribution**



Permission is granted to copy, distribute and/or modify this document under the terms of the **GNU Free Documentation license**, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license". **BLM 13: Distribution of malaria**


Permission is granted to copy, distribute and/or modify this document under the terms of the **GNU Free Documentation license**, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

BLM 14: Normal red blood cells

http://www.healthsystem.virginia.edu/internet/hematology/HessImages/Normal-peripheral-blood-RBCs-50x-website.jpg

Used with permission ©2007 Rector and Visitors of the University of Virginia Charles E. Hess, M.D. and Lindsey Krstic, B.A BLM 15: Sickle shaped red blood cells

http://www.healthsystem.virginia.edu/internet/hematology/HessImages/Sickle-Cell-Disease-40x-

Used with permission ©2007 Rector and Visitors of the University of Virginia Charles E. Hess, M.D. and Lindsey Krstic, B.A.

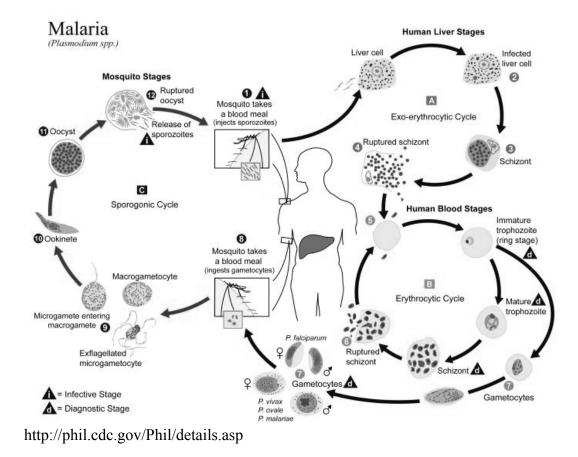
BLM 16: Sickle cell trait inheritance

Sickle cell inheritance by heterozygotes is a case of incomplete dominance. Heterozygotes maintain a level of protection against malarial infection, without suffering from the full effects of sickle cell anemia.

Hb ⁿ	Norm	al hemoglobin protein allele
Hb ^s	Sickle	e hemoglobin protein allele
Hb ⁿ	Hb ⁿ	(homozygous recessive) Represents an individual with both alleles for normal hemoglobin production. This individual would not be anemic, but they would be susceptible to malaria.
Hb ⁿ	Hb ^s	(heterozygous) Represents an individual with one allele for normal hemoglobin production and one allele for sickle hemoglobin production. These individuals have a mixture of normal red blood cells and sickle red blood cells. This combination allows these individuals to have protection from malarial infection, while only having mild anemic effects.
Hb ^s	Hb ^s	(homozygous recessive)

Hb^s Hb^s (homozygous recessive) Represents an individual with both alleles for sickle cell hemoglobin. These individuals will have full blown sickle cell anemia and may die at an early age.

Example of inheritance in a monohybrid cross (heterozygote x heterozygote)


	n	6
	Hb ⁿ	Hb ^s
Hb^n	$Hb^n Hb^n$	Hb ⁿ Hb ^s
Hb ^s	Hb ⁿ Hb ^s	Hb ^s Hb ^s

Hbⁿ Hb^s x Hbⁿ Hb^s

¹/₄ homozygous dominant
¹/₂ heterozygous
¹/₄ homozygous recessive

Heterozygous individuals maintain a level of protection against malarial infection, while suffering minimal anemic effects. These individuals have the fittest phenotype in an environment in which malaria is found. These individuals survive and reproduce in greater numbers than either homozygous type. This explains why the sickle cell trait remains common in regions where malaria is found.

BLM 17: Plasmodium life cycle

This image is in the public domain and thus free of any copyright restrictions. As a matter of courtesy we request that the content provider be credited and notified in any public or private usage of this image.

BLM 18: The mutation that results in sickle cell formation

DNA Sequence	CAC	GTC	GAC	TGA	GGA	СТС	CTC
RNA Sequence	GUG	CAG	CUG	ACU	CCU	GUG	GUG
Amino Acid Sequence	Valine	Histidine	Leucine	Threonine	Proline	GLUTAMIC ACID	Glutamic Acid

NORMAL PROTEIN

DNA Sequence	CAC	GTC	GAC	TGA	GGA	CAC	CTC
RNA Sequence	GUG	CAG	CUG	ACU	CCU	GTG	GUG
Amino Acid Sequence	Valine	Histidine	Leucine	Threonine	Proline	VALINE	Glutamic Acid

MUTANT PROTEIN

One base substitution in the DNA, an Adenine substituted for a Thymine, results in the RNA codon coding for the amino acid valine, rather than Glutamic Acid in β -globin molecule. This substitution mutation results in the formation of fibres in the protein, the end result is the sickle formation of red blood cells.

Modified from: Stryer, Lubert 1988. Biochemistry. W.H. Freeman and Company, New York.

BLM 19: Hypothesis development

	Hypothesis (What is your educated guess?)	
I predict that		
	Reasoning	
	hat reasons lead you to this hypothes	
allele is found at high frequencies be	s commonly found is similar to the mecause	ap for regions where the sickle cell
	Evidence (Facts, Statistics, Observations)	
Evidence	(Facts, Statistics, Observations) Evidence	Evidence
Acknowledge		Respond
Ackilowicuge	(To other viewpoints)	Respond

Modified from: <u>http://www.englishcompanion.com/</u>

APPENDIX A: LEARNING SKILLS ASSESSMENT

TEAMWORK			Level Achieved			
Shares ideas and resources with all the members their group.	Ν	S	G	Е		
Listens to and respects the ideas other members bring to the group.	Ν	S	G	Е		
Does fair share of the group's work.	Ν	S	G	Е		
Encourages and supports the contributions of others	Ν	S	G	Е		
WORKS INDEPENDENTLY	Le	evel A	chiev	ed		
Uses the information they already have to accomplish work.	N S G E		Е			
Begins learning activities on their own without having to be told to	Ν	S	G	Е		
start						
Finish's whatever learning activities started	Ν	S	G	Е		
Keeps working at something even when it is difficult for them	Ν	S	G	Е		
Revises work whenever it needs improvement	Ν	S	G	Е		
INITIATIVE	Level Achieved					
Looks for opportunities to learn more about topics that are	N S G E		Е			
important						
Demonstrates curiosity by asking questions	Ν	S	G	Е		
Willing to try new roles and to practice new skills	Ν	S	G	Е		
Uses a variety of resources to help me (e.g. websites and		S	G	Е		
newspapers)						
Gets help from teacher and/or class mates when needed			G	E		

Modified from:Arthur, Anne. et.al. 2007.Students First: creating dynamic classrooms. OSSTF, Educational Services. Toronto.

APPENDIX B: REFERENCES

Canadian Council of Learning, 2007.

The cultural divide in science education for Aboriginal learners. <u>http://www.cclcca.ca/CCL/Reports/LessonsInLearning/LinL20070116_Ab_sci_edu.htm?Style=Print&L</u> <u>anguage=EN</u>

Dean, Cornelia. 2006.

Bias Is Hurting Women in Science, Panel Reports. New York Times, 2006: September 19

Jensen, Eric. 2005.

Teaching with the brain in mind 2^{nd} *Edition*. Association for Supervision and Curriculum Development. Alexandria, Virginia. USA.

Ministry of Education curriculum documents

Grade 11 University Preparation Biology (SBI3U) Grade 11 University Preparation English (ENG3U) World Geography: Human Patterns and Interactions (CGU4U) Canadian and World Issues: A Geographic Analysis (CGW4U)

McCarthy, Bernice and Dennis McCarthy. 2006.

Teaching Around the 4MAT Cycle: Designing instruction for diverse learners with diverse learning styles. Corwin Press Thousand, Oaks California

NAS report, 2006.

Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

NSF, 2007.

National Science Foundation, Division of Science Resources Statistics, *Women, Minorities and Persons with Disabilities in Science and Engineering* 2007. Arlington VA: February 2007. http://www.nsf.gov/statistics/wmpd/

Raven, Peter H. and George B. Johnson, 1992. *Biology*. Mosby Year Book Inc. Toronto.

Stryer, Lubert 1988.

Biochemistry. W.H. Freeman and Company, New York.

Tower, Cathy. 2005. Language Arts, Vol. 82 No. 6, July 2005: 472 What's the Purpose?